Gunter, Jason

From: Sent: Nations, Mark [mnations@doerun.com] Thursday, July 11, 2013 11:51 AM

To:

Gunter, Jason

Cc:

England, Jason; Yingling, Mark; Wohl, Matthew; robert.hinkson@dnr.mo.gov; Ty Morris

(TMorris@barr.com)

Subject:

Progress report

Attachments:

RM 06-13.doc; SKMBT C45413071018190.pdf; Teklab Lab Report 13061394_06-25-13.pdf

Jason,

Attached is the June 2013 Rivermines progress report. Please let me know if you have questions.

Mark

This message is intended solely for the designated recipient and may contain confidential, privileged or proprietary information. If you have received it in error, please notify the sender immediately and delete the original and any copy or printout. Please note that any views or opinions presented in this e-mail are solely those of the author and do not necessarily represent those of The Doe Run Company. Finally, the recipient should check this message and any attachments for the presence of viruses or malware. The Doe Run Company accepts no liability for any loss or damage caused through the transmission of this e-mail.

30290247 4, Z

DUDZ

Remediation Group

Mark Nations
Mining Properties Manager
mnations@doerun.com

July 11, 2013

Mr. Jason Gunter Remedial Project Manager U.S. Environmental Protection Agency Region 7 - Superfund Branch 11201 Renner Blvd. Lenexa, KS 66219

Re: The Doe Run Company - Elvins/Rivermines Mine Tailings Site Monthly Progress Report

Dear Mr. Gunter:

As required by Article VI, Section 56 of the Unilateral Administrative Order (UAO) (CERCLA-07-2005-0169) for the referenced project and on behalf of The Doe Run Company, the progress report for the period June 1, 2013 through June 30, 2013 is enclosed. If you have any questions or comments, please call me at 573-518-0800.

Sincerely,

Mark Nations

Mining Properties Manager

Enclosures

c: Jason England - TDRC

Mark Yingling – TDRC (electronic only)

Matt Wohl – TDRC (electronic only)

Robert Hinkson - MDNR

Ty Morris - Barr Engineering

Elvins/Rivermines Mine Tailings Site

Park Hills, Missouri

Removal Action - Monthly Progress Report

Period: June 1, 2013 – June 30, 2013

1. Actions Performed and Problems Encountered This Period:

- Continued operating the roughing filter, ZVI filter, aeration tank, and final sand filter during the period.
- Flow restrictions caused the roughing filter to overflow during the period. Due to influent plugging of the ZVI filter inlet or inlet pipe, additional head loss in the inlet pipe/structure caused the water level in the roughing filter (bio filter) to rise and overflow the pool sides.
- Continued to take analytical samples from the pilot test three times a week. Samples were taken from the roughing filter (RMP-Rough), the aeration tank (RMP-Polish), and the final sand filter (RMP-Effluent).
- Continued to take analytical samples from the seep pond effluent and the western treatment pond effluent to monitor the metals reduction of the treatment pond.
- Additional head losses occurred in the 6-inch diameter pipes transferring water from the seep pond to
 the treatment cells. The head losses caused the seep pond to overflow and cause scouring around the
 seep pond manhole and on the seep pond berms.
- Flow through the seepage ponds was measured at approximately 390 gallons per minute on June 25, 2013. This is significantly more than the 100 to 200 gallons per minute that is typically observed in the system. The increase in flow rate is expected to be a result of the heavy spring rains. The increase it flow rate is also believed to be a cause of increased head losses in the system.
- A pipe cleaning contractor was hired to clear debris from the 6-inch diameter pipes transferring water
 from the seep pond to the treatment cells. Deceased animals and other debris were removed from the
 pipes. Flow between the seepage pond and the treatment cells were increased, and overflowing of the
 seepage pond was alleviated. Although head losses decreased, the observed head losses after the pipe
 cleaning were still observed to be greater than normally observed.

2. Analytical Data and Results Received This Period:

- Dissolved zinc concentrations in the polishing filter effluent ranged between 0.003 mg/L and 0.012 mg/L during the period.
- Total zinc concentrations in the polishing filter ranged between 0.113 mg/L and 0.910 mg/L during the period.
- Total iron concentrations in the polishing filter ranged between 1.07 mg/L and 2.52 mg/L during the period.
- Total suspended solids concentrations in the polishing filter effluent ranged between non-detect and 10.0 mg/L during the period.
- During this period, water samples were collected from just upstream of Old Missouri Highway 32, as
 well as from upstream and downstream of the confluence of the site discharge with Flat River. The
 analytical results for this event are included in this progress report.
- During this period, the Ambient Air Monitoring Reports for February 2013 and March 2013 were completed. Any issues identified in these reports are discussed below. A copy of these documents has been sent to your attention.
 - The February 2013 Ambient Air Monitoring Report noted the following:
- · The action levels for lead and dust were not exceeded.

Rivermines Mine Tailings Site – Monthly Progress Report Period: March 1, 2013 – March 31, 2013 Page 2

- No samples were taken with the TSP monitors on 02/22/13 due to an ice storm.
- No samples were taken with the PM10 monitors on 02/24/13 due to an ice storm.

The March 2013 Ambient Air Monitoring Report noted the following:

- The action levels for lead and dust were not exceeded.
- No samples were taken with the TSP monitors on 03/07/13 due to the remediation crew being at annual training.

3. Developments Anticipated and Work Scheduled for Next Period:

- · Continue analytical sampling and field measurements three times a week. No WET tests are planned.
- Continue to operate the renovated pilot test.
- · Complete monthly water sampling activities as described in the Removal Action Work Plan.
- · Complete air monitoring activities as described in the Removal Action Work Plan.
- Continue monitoring the western treatment pond to see that the hydraulics are working properly and evaluate the metals reduction as the pond continues to come online.
- Pending successful removal of the west pond obstructions, initial phases of cleanout of the old media in the east pond may begin.

4. Changes in Personnel:

None.

5. Issues or Problems Arising This Period:

None

6. Resolution of Issues or Problems Arising This Period:

• None.

End of Monthly Progress Report

July 02, 2013

Allison Olds
Barr Engineering Company
1001 Diamond Ridge
Suite 1100
Jefferson City, MO 65109
TEL: (573) 638-5007

TEL: (573) 638-5007 FAX: (573) 638-5001

RE: Rivermines NPDES

Dear Allison Olds:

TEKLAB, INC received 4 samples on 6/26/2013 8:55:00 AM for the analysis presented in the following report.

Samples are analyzed on an as received basis unless otherwise requested and documented. The sample results contained in this report relate only to the requested analytes of interest as directed on the chain of custody. NELAP accredited fields of testing are indicated by the letters NELAP under the Certification column. Unless otherwise documented within this report, Teklab Inc. analyzes samples utilizing the most current methods in compliance with 40CFR. All tests are performed in the Collinsville, IL laboratory unless otherwise noted in the Case Narrative.

All quality control criteria applicable to the test methods employed for this project have been satisfactorily met and are in accordance with NELAP except where noted. The following report shall not be reproduced, except in full, without the written approval of Teklab, Inc.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Michael L. Austin

Project Manager

(618)344-1004 ex 16

MAustin@teklabinc.com

WorkOrder: 13061394

Report Contents

http://www.teklabinc.com/

Client: Barr Engineering Company Work Order: 13061394

Client Project: Rivermines NPDES Report Date: 02-Jul-13

This reporting package includes the following:

Cover Letter	1
Report Contents	2
Definitions	3
Case Narrative	4
Laboratory Results	5
Sample Summary	9
Dates Report	10
Quality Control Results	12
Receiving Check List	17
Chain of Custody	Appended

Definitions

http://www.teklabinc.com/

Client: Barr Engineering Company

Work Order: 13061394

Client Project: Rivermines NPDES

Report Date: 02-Jul-13

Abbr Definition

- CCV Continuing calibration verification is a check of a standard to determine the state of calibration of an instrument between recalibration.
- DF Dilution factor is the dilution performed during analysis only and does not take into account any dilutions made during sample preparation. The reported result is final and includes all dilutions factors.
- DNI Did not ignite
- DUP Laboratory duplicate is an aliquot of a sample taken from the same container under laboratory conditions for independent processing and analysis independently of the original aliquot.
- ICV Initial calibration verification is a check of a standard to determine the state of calibration of an instrument before sample analysis is initiated.
- IDPH IL Dept. of Public Health
- LCS Laboratory control sample, spiked with verified known amounts of analytes, is analyzed exactly like a sample to establish intra-laboratory or analyst specific precision and bias or to assess the performance of all or a portion of the measurement system. The acceptable recovery range is in the QC Package (provided upon request).
- LCSD Laboratory control sample duplicate is a replicate laboratory control sample that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
 - MB Method blank is a sample of a matrix similar to the batch of associated sample (when available) that is free from the analytes of interest and is processed simultaneously with and under the same conditions as samples through all steps of the analytical procedures, and in which no target analytes or interferences should present at concentrations that impact the analytical results for sample analyses.
- MDL Method detection limit means the minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.
- MS Matrix spike is an aliquot of matrix fortified (spiked) with known quantities of specific analytes that is subjected to the entire analytical procedures in order to determine the effect of the matrix on an approved test method's recovery system. The acceptable recovery range is listed in the QC Package (provided upon request).
- MSD Matrix spike duplicate means a replicate matrix spike that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MW Molecular weight
- ND Not Detected at the Reporting Limit
- NELAP NELAP Accredited
 - PQL Practical quantitation limit means the lowest level that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operation conditions. The acceptable recovery range is listed in the QC Package (provided upon request).
 - RL The reporting limit the lowest level that the data is displayed in the final report. The reporting limit may vary according to customer request or sample dilution. The reporting limit may not be less than the MDL.
 - RPD Relative percent difference is a calculated difference between two recoveries (ie. MS/MSD). The acceptable recovery limit is listed in the QC Package (provided upon request).
 - SPK The spike is a known mass of target analyte added to a blank sample or sub-sample; used to determine recovery deficiency or for other quality control purposes.
 - Surr Surrogates are compounds which are similar to the analytes of interest in chemical composition and behavior in the analytical process, but which are not normally found in environmental samples.
- TNTC Too numerous to count (> 200 CFU)

Qualifiers

- # Unknown hydrocarbon
- E Value above quantitation range
- M Manual Integration used to determine area response
- R RPD outside accepted recovery limits
- X Value exceeds Maximum Contaminant Level

- B Analyte detected in associated Method Blank
- H Holding times exceeded
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside recovery limits

Case Narrative

http://www.teklabinc.com/

Work Order: 13061394

Report Date: 02-Jul-13

Client: Barr Engineering Company

Client Project: Rivermines NPDES

Cooler Receipt Temp: 1.8 °C

Locations and Accreditations

	Collinsville	Springfield	Kansas City	Collinsville Air
Address	5445 Horseshoe Lake Road	3920 Pintail Dr	8421 Nieman Road	5445 Horseshoe Lake Road
	Collinsville, IL 62234-7425	Springfield, IL 62711-9415	Lenexa, KS 66214	Collinsville, IL 62234-7425
Phone	(618) 344-1004	(217) 698-1004	(913) 541-1998	(618) 344-1004
Fax	(618) 344-1005	(217) 698-1005	(913) 541-1998	(618) 344-1005
Email	jhriley@teklabinc.com	KKlostermann@teklabinc.com	dthompson@teklabinc.com	EHurley@teklabinc.com

State	Dept	Cert #	NELAP	Exp Date	Lab	
Illinois	IEPA	100226	NELAP	1/31/2014	Collinsville	
Kansas	KDHE	E-10374	NELAP	1/31/2014	Collinsville	
Louisiana	LDEQ	166493	NELAP	6/30/2014	Collinsville	
Louisiana	LDEQ	166578	NELAP	6/30/2014	Springfield	
Texas	TCEQ	T104704515-12-1	NELAP	7/31/2013	Collinsville	
Arkansas	ADEQ	88-0966		3/14/2014	Collinsville	
Illinois	IDPH	17584		4/30/2013	Collinsville	
Kentucky	UST	0073		4/5/2014	Collinsville	
Missouri	MDNR	00930		4/13/2013	Collinsville	
Oklahoma	ODEQ	9978		8/31/2013	Collinsville	

http://www.teklabinc.com/

Client: Barr Engineering Company

Work Order: 13061394

Client Project: Rivermines NPDES

Report Date: 02-Jul-13

Lab ID: 13061394-001

Client Sample ID: RM-001

Matrix: AQUEOUS

Collection Date: 06/25/2013 12:40

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
EPA 600 375.2 REV 2.0 1993	(TOTAL)							
Sulfate	NELAP	500		996	mg/L	50	06/27/2013 1:49	R178855
STANDARD METHOD 4500-	HB, LABORATORY A	NALYZED						
Lab pH	NELAP	1		7.34		1	06/26/2013 22:32	R178846
STANDARD METHODS 2540	D							
Total Suspended Solids	NELAP	6		< 6	mg/L	1	06/26/2013 13:37	R178849
STANDARD METHODS 2540	F							
Solids, Settleable	NELAP	0.1		< 0.1	ml/L	1	06/26/2013 13:40	R17884
STANDARD METHODS 5310	C, ORGANIC CARBO	N						
Total Organic Carbon (TOC)	NELAP	1	yak dalan kelalan dan dan dalah dalah ya k	1.2	mg/L	1	06/28/2013 21:32	R178963
EPA 600 4.1.1, 200.7R4.4, MI	ETALS BY ICP (DISSO	LVED)						
Cadmium	NELAP	2		12.8	μg/L	1	06/28/2013 20:41	89617
Zinc	NELAP	10		19700	μg/L	1	06/28/2013 20:41	89617
EPA 600 4.1.4, 200.7R4.4, MI	ETALS BY ICP (TOTAL	-)						
Cadmium	NELAP	2		16.9	μg/L	1	06/28/2013 18:16	89577
Zinc	NELAP	10		21200	μg/L	1	06/28/2013 18:16	89577
STANDARD METHODS 3030	E, 3113 B, METALS I	BY GFAA						
Lead	NELAP	2	X	16.7	μg/L	1	06/27/2013 11:14	89573
STANDARD METHODS 2340	B, HARDNESS (TOTA	AL)						
Hardness, as (CaCO3)	NELAP	1		1140	mg/L	1	07/01/2013 0:00	R17899
STANDARD METHODS 3030	B, 3113 B, METALS E	SY GFAA (C	ISSOLVE	ED)				
Lead	NELAP	2	X	7.05	μg/L	1	06/28/2013 9:12	89612

http://www.teklabinc.com/

Client: Barr Engineering Company

Work Order: 13061394

Client Project: Rivermines NPDES

Report Date: 02-Jul-13

Lab ID: 13061394-002

Client Sample ID: RM-US

Matrix: AQUEOUS

Collection Date: 06/25/2013 12:30

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
EPA 600 375.2 REV 2.0 1993	(TOTAL)							
Sulfate	NELAP	10		22	mg/L	1	06/27/2013 2:10	R178855
STANDARD METHOD 4500-	HB, LABORATORY AN	NALYZED						
Lab pH	NELAP	1		8.21		1	06/26/2013 21:38	R178846
STANDARD METHODS 2540	D							
Total Suspended Solids	NELAP	6		< 6	mg/L	1	06/26/2013 13:37	R178849
STANDARD METHODS 5310	C, ORGANIC CARBO	N						
Total Organic Carbon (TOC)	NELAP	1		2	mg/L	1	06/28/2013 21:38	R178963
EPA 600 4.1.1, 200.7R4.4, M	ETALS BY ICP (DISSO	LVED)						
Cadmium	NELAP	2		< 2	μg/L	1	06/28/2013 20:47	89617
Zinc	NELAP	10		< 10	μg/L	1	06/28/2013 20:47	89617
EPA 600 4.1.4, 200.7R4.4, M	ETALS BY ICP (TOTAL	_)						
Cadmium	NELAP	2		< 2	µg/L	1	06/28/2013 18:22	
Zinc	NELAP	10		< 10	μg/L	1	06/28/2013 18:22	89577
MS QC limits for Mg are not appli	cable due to high sample/s	spike ratio.						
MS QC limits for Ca are not applied				***************************************				
STANDARD METHODS 303	0 E, 3113 B, METALS I	BY GFAA						
Lead	NELAP	2		2.3	μg/L	1	06/27/2013 11:24	89573
STANDARD METHODS 2340	B, HARDNESS (TOTA	AL)						
Hardness, as (CaCO3)	NELAP	1		209	mg/L	1	07/01/2013 0:00	R17899
STANDARD METHODS 3030	B, 3113 B, METALS E	BY GFAA (C	ISSOLV	ED)				
Lead	NELAP	2		< 2	μg/L	1	06/28/2013 9:29	89612

http://www.teklabinc.com/

Client: Barr Engineering Company

Work Order: 13061394

Client Project: Rivermines NPDES

Report Date: 02-Jul-13

Lab ID: 13061394-003

Client Sample ID: RM-DS

Matrix: AQUEOUS

Collection Date: 06/25/2013 13:20

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
EPA 600 375.2 REV 2.0 1993	(TOTAL)							
Sulfate	NELAP	100		189	mg/L	10	06/27/2013 2:29	R178855
STANDARD METHOD 4500-H	B, LABORATORY A	NALYZED						
Lab pH	NELAP	1		8.01		1	06/26/2013 21:40	R178846
STANDARD METHODS 2540	D							
Total Suspended Solids	NELAP	6		< 6	mg/L	1	06/26/2013 13:51	R178849
STANDARD METHODS 5310	C, ORGANIC CARBO	N						
Total Organic Carbon (TOC)	NELAP	1		1.8	mg/L	1	06/28/2013 21:44	R178963
EPA 600 4.1.1, 200.7R4.4, MI	ETALS BY ICP (DISSO	LVED)						
Cadmium	NELAP	2		< 2	μg/L	1	06/28/2013 21:06	89617
Zinc	NELAP	10		2090	μg/L	1 .	06/28/2013 21:06	89617
EPA 600 4.1.4, 200.7R4.4, MI	ETALS BY ICP (TOTAL	-)						
Cadmium	NELAP	2		< 2	μg/L	1	06/28/2013 18:40	89577
Zinc	NELAP	10		2170	μg/L	1	06/28/2013 18:40	89577
STANDARD METHODS 3030	E, 3113 B, METALS I	BY GFAA						
Lead	NELAP	2	X	5.85	μg/L	1	06/27/2013 11:28	89573
STANDARD METHODS 2340	B, HARDNESS (TOTA	(L)						
Hardness, as (CaCO3)	NELAP	1		359	mg/L	1	07/01/2013 0:00	R178991
STANDARD METHODS 3030	B, 3113 B, METALS E	Y GFAA (D	ISSOLVE	ED)				
Lead	NELAP	2		3.88	μg/L	1	06/28/2013 9:33	89612

http://www.teklabinc.com/

Client: Barr Engineering Company

Work Order: 13061394

Client Project: Rivermines NPDES

Report Date: 02-Jul-13

Lab ID: 13061394-004

Client Sample ID: RM-DUP

Matrix: AQUEOUS

Collection Date: 06/25/2013 0:00

Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
EPA 600 375.2 REV 2.0 1993	(TOTAL)							
Sulfate	NELAP	10		21	mg/L	1	06/27/2013 17:55	R178902
STANDARD METHOD 4500-H	B, LABORATORY AN	NALYZED						
Lab pH	NELAP	1		8.14		1	06/26/2013 21:41	R178846
STANDARD METHODS 2540	D							
Total Suspended Solids	NELAP	6		< 6	mg/L	1	06/26/2013 13:51	R178849
STANDARD METHODS 5310	C, ORGANIC CARBO	N						
Total Organic Carbon (TOC)	NELAP	1		1.9	mg/L	1	06/28/2013 21:51	R178963
EPA 600 4.1.1, 200.7R4.4, MI	ETALS BY ICP (DISSO	LVED)						
Cadmium	NELAP	2		< 2	μg/L	1	06/28/2013 21:24	89617
Zinc	NELAP	10		< 10	μg/L	1	06/28/2013 21:24	89617
EPA 600 4.1.4, 200.7R4.4, MI	ETALS BY ICP (TOTAL	-)						
Cadmium	NELAP	2		< 2	μg/L	1	06/28/2013 18:58	89577
Zinc	NELAP	10		< 10	μg/L	1	06/28/2013 18:58	89577
STANDARD METHODS 3030	D E, 3113 B, METALS E	BY GFAA						
Lead	NELAP	2		2.22	μg/L	1	06/27/2013 11:38	89573
STANDARD METHODS 2340	B, HARDNESS (TOTA	(L)						
Hardness, as (CaCO3)	NELAP	1		209	mg/L	1	07/01/2013 0:00	R178991
STANDARD METHODS 3030	B, 3113 B, METALS E	BY GFAA (DI	SSOLVE	D)				
Lead	NELAP	2		< 2	μg/L	1	06/28/2013 9:36	89612

Sample Summary

http://www.teklabinc.com/

Client: Barr Engineering Company

Work Order: 13061394

Client Project: Rivermines NPDES

Lab Sample ID	Client Sample ID	Matrix	Fractions	Collection Date
13061394-001	RM-001	Aqueous	5	06/25/2013 12:40
13061394-002	RM-US	Aqueous	5	06/25/2013 12:30
13061394-003	RM-DS	Aqueous	5	06/25/2013 13:20
13061394-004	RM-DUP	Aqueous	5	06/25/2013 0:00

Dates Report

http://www.teklabinc.com/

Client: Barr Engineering Company

Work Order: 13061394

Client Project: Rivermines NPDES

Sample ID	Client Sample ID	Collection Date	Received Date		
	Test Name			Prep Date/Time	Analysis Date/Time
3061394-001A	RM-001	06/25/2013 12:40	06/26/2013 8:55		
	Standard Methods 2540 F			NA POLICE CONTROL CONT	06/26/2013 13:40
3061394-001B	RM-001	06/25/2013 12:40	06/26/2013 8:55		
	EPA 600 375.2 Rev 2.0 1993 (Total)				06/27/2013 1:49
	Standard Method 4500-H B, Laboratory Analyzed				06/26/2013 22:32
	Standard Methods 2540 D				06/26/2013 13:37
3061394-001C	RM-001	06/25/2013 12:40	06/26/2013 8:55		
	EPA 600 4.1.4, 200.7R4.4, Metals by ICP (Total)			06/26/2013 16:33	06/28/2013 18:16
	EPA 600 4.1.4, 200.7R4.4, Metals by ICP (Total)			06/26/2013 16:33	07/01/2013 11:35
	Standard Methods 3030 E, 3113 B, Metals by GFAA			06/26/2013 15:21	06/27/2013 11:14
	Standard Methods 2340 B, Hardness (Total)				07/01/2013 0:00
3061394-001D	RM-001	06/25/2013 12:40	06/26/2013 8:55		
	EPA 600 4.1.1, 200.7R4.4, Metals by ICP (Dissolved)			06/27/2013 12:46	06/28/2013 20:41
	Standard Methods 3030 B, 3113 B, Metals by GFAA (Dissolved)		06/27/2013 11:39	06/28/2013 9:12
13061394-001E	RM-001	06/25/2013 12:40	06/26/2013 8:55		
	Standard Methods 5310 C, Organic Carbon				06/28/2013 21:32
13061394-002A	RM-US	06/25/2013 12:30	06/26/2013 8:55		
	Standard Method 4500-H B, Laboratory Analyzed				06/26/2013 21:38
	Standard Methods 2540 D				06/26/2013 13:37
13061394-002B	RM-US	06/25/2013 12:30	06/26/2013 8:55		
	EPA 600 375.2 Rev 2.0 1993 (Total)				06/27/2013 2:10
13061394-002C	RM-US	06/25/2013 12:30	06/26/2013 8:55		
	EPA 600 4.1.4, 200.7R4.4, Metals by ICP (Total)			06/26/2013 16:33	06/28/2013 18:22
	EPA 600 4.1.4, 200.7R4.4, Metals by ICP (Total)			06/26/2013 16:33	07/01/2013 11:39
	Standard Methods 3030 E, 3113 B, Metals by GFAA			06/26/2013 15:21	06/27/2013 11:24
	Standard Methods 2340 B, Hardness (Total)				07/01/2013 0:00
13061394-002D	RM-US	06/25/2013 12:30	06/26/2013 8:55		
	EPA 600 4.1.1, 200.7R4.4, Metals by ICP (Dissolved)			06/27/2013 12:46	06/28/2013 20:47
	Standard Methods 3030 B, 3113 B, Metals by GFAA (Dissolved)		06/27/2013 11:39	06/28/2013 9:29
13061394-002E	RM-US	06/25/2013 12:30	06/26/2013 8:55		
	Standard Methods 5310 C, Organic Carbon				06/28/2013 21:38
13061394-003A	RM-DS	06/25/2013 13:20	06/26/2013 8:55		
	Standard Method 4500-H B, Laboratory Analyzed				06/26/2013 21:40
	Standard Methods 2540 D				06/26/2013 13:51
13061394-003B	RM-DS	06/25/2013 13:20	06/26/2013 8:55		
	EPA 600 375.2 Rev 2.0 1993 (Total)				06/27/2013 2:29

Dates Report

http://www.teklabinc.com/

Client: Barr Engineering Company

Client Project: Rivermines NPDES

Work Order: 13061394

Sample ID	Client Sample ID	Collection Date	Received Date		
	Test Name		5 N (2 N (Prep Date/Time	Analysis Date/Time
13061394-003C	RM-DS	06/25/2013 13:20	06/26/2013 8:55		
	EPA 600 4.1.4, 200.7R4.4, Metals by ICP (Total)			06/26/2013 16:33	06/28/2013 18:40
	EPA 600 4.1.4, 200.7R4.4, Metals by ICP (Total)			06/26/2013 16:33	07/01/2013 11:50
	Standard Methods 3030 E, 3113 B, Metals by GFAA			06/26/2013 15:21	06/27/2013 11:28
	Standard Methods 2340 B, Hardness (Total)				07/01/2013 0:00
13061394-003D	RM-DS	06/25/2013 13:20	06/26/2013 8:55		
	EPA 600 4.1.1, 200.7R4.4, Metals by ICP (Dissolved)			06/27/2013 12:46	06/28/2013 21:06
	Standard Methods 3030 B, 3113 B, Metals by GFAA (I	Dissolved)		06/27/2013 11:39	06/28/2013 9:33
13061394-003E	RM-DS	06/25/2013 13:20	06/26/2013 8:55		
	Standard Methods 5310 C, Organic Carbon				06/28/2013 21:44
13061394-004A	RM-DUP	06/25/2013 0:00	06/26/2013 8:55		
	Standard Method 4500-H B, Laboratory Analyzed				06/26/2013 21:41
	Standard Methods 2540 D				06/26/2013 13:51
13061394-004B	RM-DUP	06/25/2013 0:00	06/26/2013 8:55		
	EPA 600 375.2 Rev 2.0 1993 (Total)				06/27/2013 17:55
13061394-004C	RM-DUP	06/25/2013 0:00	06/26/2013 8:55		
	EPA 600 4.1.4, 200.7R4.4, Metals by ICP (Total)			06/26/2013 16:33	06/28/2013 18:58
	EPA 600 4.1.4, 200.7R4.4, Metals by ICP (Total)			06/26/2013 16:33	07/01/2013 11:53
	Standard Methods 3030 E, 3113 B, Metals by GFAA			06/26/2013 15:21	06/27/2013 11:38
	Standard Methods 2340 B, Hardness (Total)				07/01/2013 0:00
13061394-004D	RM-DUP	06/25/2013 0:00	06/26/2013 8:55		
	EPA 600 4.1.1, 200.7R4.4, Metals by ICP (Dissolved)			06/27/2013 12:46	06/28/2013 21:24
	Standard Methods 3030 B, 3113 B, Metals by GFAA (06/27/2013 11:39	06/28/2013 9:36		
13061394-004E	RM-DUP	06/25/2013 0:00	06/26/2013 8:55		
	Standard Methods 5310 C, Organic Carbon				06/28/2013 21:51

http://www.teklabinc.com/

Client: Barr Engineering Company

Work Order: 13061394

Client Project: Rivermines NPDES

Batch R178855 SampID: MBLK	SampType:	MBLK		Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Sulfate			10	Qua.	< 10	Бриге				7	06/26/2013
Batch R178855 SampID: LCS	SampType:	LCS		Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Sulfate			10		21	20	0	104.2	90	110	06/26/2013
Batch R178855 SampID: 13061394-	SampType: 001BMS	MS		Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Sulfate		an the state of the section of the section of	500		1470	500	995.9	94.3	90	110	06/27/2013
Batch R178855 SampID: 13061394-	SampType: 001BMSD	MSD		Units mg/L					RPD	Limit 10	Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref \	Val %RPD	Analyzed
Sulfate			500		1470	500	995.9	95	1467	0.25	06/27/2013
Batch R178902 SampID: MBLK	SampType:	MBLK		Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Sulfate			10		< 10		-	SA 00 00 00 00 00 00 00 00 00 00 00 00 00			06/27/2013
Batch R178902 SampID: LCS	SampType:	LCS		Units mg/L							Date Analyzed
Analyses			RL	Qual			SPK Ref Val		Low Limit		
Sulfate			10		19	20	0	96.2	90	110	06/27/2013
STANDARD METH	IOD 4500-H	B, LAB	ORATO	RY ANALYZEI	ס						
Batch R178846 SampID: LCS	SampType:	LCS		Units							Date
Analyses			RL	Qual	Result		SPK Ref Val			High Limit	Analyzed
Lab pH			1		6.98	7	0	99.7	99.1	100.8	06/26/2013
Batch R178846 SampID: 13061394-	SampType: 001B	DUP		Units					RPD	Limit 10	Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref	Val %RPD	Analyzed
Lab pH			1		7.36	•			7.34	0.27	06/26/2013

http://www.teklabinc.com/

Client: Barr Engineering Company

Work Order: 13061394

Client Project: Rivermines NPDES

STANDARD METHOD 45	OUU-H E	, LAB	JRAIC	INT ANALYZE	J						
Batch R178846 Samp SampID: 13061394-002A	Type:	DUP		Units					RPD	Limit 10	Date
Analyses			RL	Oual	Result	Spike	SPK Ref Val	%REC	RPD Ref \	/al %RPD	Analyzed
Lab pH			1		8.21				8.21	0.00	06/26/2013
	Туре:	DUP		Units					RPD	Limit 10	
SampID: 13061394-003A Analyses			RL	Oual	Result	Snike	SPK Ref Val	%REC	RPD Ref \	/al %RPD	Date Analyzed
Lab pH			1	Quai	8.05	Брис			8.01	0.50	06/26/2013
Batch R178846 Samp SampID: 13061394-004A	Туре:	DUP		Units					RPD	Limit 10	Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref \	/al %RPD	Analyzed
Lab pH			1		8.22				8.14	0.98	06/26/2013
STANDARD METHODS	2540 D										
Batch R178849 Samp SampID: MBLK	Type:	MBLK		Units mg/L							Date
Analyses			RL	Qual		Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Total Suspended Solids			6		< 6						06/26/2013
Batch R178849 Samp SampID: LCS	Туре:	LCS		Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Total Suspended Solids			6		96	100	0	96	85	115	06/26/2013
Total Suspended Solids			6		100	100	0	100	85	115	06/26/2013
Total Suspended Solids			6		101	100	0	101	85	115	06/26/2013
Total Suspended Solids			6		101	100	0	101	85	115	06/26/2013
Batch R178849 Samp SampID: 13061394-003A-D		DUP		Units mg/L					RPD	Limit 15	Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref \	/al %RPD	Analyzed
Total Suspended Solids			6		< 6				0	0.00	06/26/2013
STANDARD METHODS	5310 C,	ORGA	ANIC C	ARBON							
SampID: ICB/MBLK	Туре:	MBLK	1	Units mg/L							Date Analyzed
Analyses			RL	Qual		Spike	SPK Ref Val	%REC	Low Limit	High Limit	
Total Organic Carbon (TC	OC)		1		< 1						06/28/2013
Batch R178963 Samp SampID: ICV/LCS	Туре:	LCS		Units mg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Total Organic Carbon (TC	OC)		10			43.6	0	101.7	90	110	06/28/2013

http://www.teklabinc.com/

Client: Barr Engineering Company

Work Order: 13061394

Client Project: Rivermines NPDES

STANDARD METHODS 5310	C, ORG	ANIC CA	ARBON							
Batch R178963 SampType SampID: 13061394-004EMS	NAME OF THE OWNER, PARTY		Units mg/L							Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Total Organic Carbon (TOC)		1		6.8	5	1.9	97.6	85	115	06/28/2013
Batch R178963 SampType SampID: 13061394-004EMSD	: MSD		Units mg/L					RPD	Limit 10	Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref \	/al %RPD	Analyzed
Total Organic Carbon (TOC)		1		6.8	5	1.9	98.4	6.78	0.59	06/28/2013
EPA 600 4.1.1, 200.7R4.4, MI	ETALS B	Y ICP (I	DISSOLVED)							
Batch 89617 SampType SampID: MBLK-89617	: MBLK		Units µg/L							Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Cadmium		2		< 2	2	0	0	-100	100	06/28/2013
Zinc		10		< 10	10	0	0	-100	100	06/28/2013
Batch 89617 SampType SampID: LCS-89617	: LCS		Units µg/L							Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Cadmium		2		45.1	50	0	90.2	85	115	06/28/2013
Zinc		10		451	500	0	90.2	85	115	06/28/2013
Batch 89617 SampType SampID: 13061394-002DMS	: MS		Units µg/L							Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Cadmium		2		45.3	50	0	90.6	75	125	06/28/2013
Zinc		10		457	500	2.8	90.9	75	125	06/28/2013
Batch 89617 SampType SampID: 13061394-002DMSD	: MSD		Units µg/L					RPD	Limit 20	Date
Analyses		RL	Oual	Result	Spike	SPK Ref Val	%REC	RPD Ref	Val %RPD	Analyzed
Cadmium		2	Quui	46.2	50	0	92.4	45.3	1.97	06/28/2013
Zinc		10		463	500	2.8	92.1	457	1.35	06/28/2013
EPA 600 4.1.4, 200.7R4.4, M	ETALS E	BY ICP (TOTAL)							
Batch 89577 SampType SampID: MBLK-89577	: MBLK		Units µg/L							Date
Analyses		RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Cadmium		2		< 2	2	0	0	-100	100	06/28/2013
Calcium		50		< 50	50	0	0	-100	100	06/28/2013
Magnesium		10		< 10	10	0	0	-100	100	07/01/2013
								-100	100	06/28/2013
										06/28/2013
Zinc Zinc		10 10		< 10 < 10	10 10	0	0	-100 -100	100 100	

http://www.teklabinc.com/

Client: Barr Engineering Company

Work Order: 13061394

Client Project: Rivermines NPDES

Batch 89577 SampID: LCS-89577	SampType:	LCS		Units µg/L							Date
Analyses			RL	Qual	Result	Snike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Cadmium			2	Quai	50	50	0	100	85	115	06/28/2013
Calcium			50		1260	1200	0	104.8	85	115	06/28/2013
Magnesium			10		756	750	0	100.7	85	115	07/01/2013
Zinc			10		493	500	0	98.6	85	115	06/28/2013
Zinc	-		10		510	500	0	102	85	115	06/28/2013
Batch 89577	SampType:	MS		Units µg/L							
SampID: 13061394-0	02CMS										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Cadmium			2		49.8	50	0	99.6	75	125	06/28/2013
Calcium			50	S	44700	1200	44200	41.7	75	125	06/28/2013
Magnesium			10	S	24000	750	23800	18.7	75	125	07/01/2013
Zinc			10		497	500	4.3	98.5	75	125	06/28/2013
Batch 89577	SampType:	MSD		Units µg/L					RPD	Limit 20	
SampID: 13061394-0	02CMSD										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref \	/al %RPD	Analyzed
Cadmium			2		49.2	50	0	98.4	49.8	1.21	06/28/2013
Calcium			50	S	45000	1200	44200	67.5	44700	0.69	06/28/2013
Magnesium			10	S	23800	750	23800	-1.3	24000	0.63	07/01/2013
Zinc			10		490	500	4.3	97.1	497	1.40	06/28/2013
STANDARD METHO	DDS 3030 I	Ξ, 3113	B, MET	ALS BY GFAA							
Batch 89573 SampID: MBLK-8957	SampType: 3	MBLK		Units µg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Lead			2		< 2	2	0	0	-100	100	06/27/2013
Batch 89573	SampType:	LCS		Units µg/L							
SampID: LCS-89573											Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
			2		15	15	0	100.1	85	115	06/27/2013
Lead		MC		Units µg/L							Date
	SampType: 01CMS	MS									
Batch 89573		MS	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Batch 89573 SampID: 13061394-0		MS	RL 2	Qual	Result 30.2	Spike 15	SPK Ref Val	%REC 90.2	Low Limit 70	High Limit	06/27/2013
Batch 89573 SampID: 13061394-0 Analyses Lead				Qual Units µg/L					70		
Batch 89573 SampID: 13061394-0 Analyses Lead	01CMS SampType:								70	130	
Batch 89573 SampID: 13061394-0 Analyses Lead Batch 89573	01CMS SampType:				30.2	15		90.2	70 RPD	130	06/27/2013

http://www.teklabinc.com/

Client: Barr Engineering Company

Work Order: 13061394

Client Project: Rivermines NPDES

STANDARD METHO	DS 3030 B	, 3113	в, мет	ALS BY GFAA	(DISSOL	VED)					
Batch 89612 SampID: MBLK-89612	SampType: 2	MBLK		Units µg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Lead			2		< 2	2	0	0	-100	100	06/28/2013
Batch 89612 SampID: LCS-89612	SampType:	LCS		Units µg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Lead			2		13.6	15	0	90.9	85	115	06/28/2013
Batch 89612 SampID: 13061394-0		MS		Units µg/L							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Lead		A. John C. Ton H. A.	2		17.9	15	7.05	72.6	70	130	06/28/2013
Batch 89612	SampType:	MSD		Units µg/L					RPD	Limit 20	
SampID: 13061394-0	01DMSD										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref	Val %RPD	Analyzed
Lead			2		17.7	15	7.05	71.1	17.9	1.28	06/28/2013

Receiving Check List

http://www.teklabinc.com/

Client: Barr Engineering Company

Work Order: 13061394

Client Project: Rivermines NPDES			Report	Date: 02-Jul	-13
Carrier: Tim Mathis Completed by: On: 26-Jun-13 Emily E. Pohlman	Revi	ived By: SRH iewed by: On: un-13 N	MULL Tichael L. Austin		
Pages to follow: Chain of custody 1	Extra pages included	d 0			
Shipping container/cooler in good condition?	Yes 🗸	No	Not Present	Temp ℃	1.8
Type of thermal preservation?	None	Ice 🗸	Blue Ice	Dry Ice	
Chain of custody present?	Yes 🗸	No		,	
Chain of custody signed when relinquished and received?	Yes 🗸	No			
Chain of custody agrees with sample labels?	Yes 🗸	No 🗌			
Samples in proper container/bottle?	Yes 🗸	No 🗌			
Sample containers intact?	Yes 🗸	No			
Sufficient sample volume for indicated test?	Yes 🗸	No 🗌			
All samples received within holding time?	Yes 🗸	No 🗌			
Reported field parameters measured:	Field	Lab 🗸	NA 🗌		
Container/Temp Blank temperature in compliance?	Yes 🗸	No			
When thermal preservation is required, samples are complian 0.1°C - 6.0°C , or when samples are received on ice the same		between			
Water – at least one vial per sample has zero headspace?	Yes	No 🗌	No VOA vials 🗸		
Water - TOX containers have zero headspace?	Yes	No 🗌	No TOX containers ✓		
Water - pH acceptable upon receipt?	Yes 🗸	No 🗌	NA 🗆		
NPDES/CWA TCN interferences checked/treated in the field?	Yes	No 🗌	NA 🗸		
Any No responses n	nust be detailed belo	w or on the C	coc.		

1000	1201
1300	1 214

美兴至五级
BARR
Many and an organization of the party of the last of t

Chain of Custody

1300	1394

	Jefferson City, MO 65109 [573] 638-5000 Teklab, Inc. Courier Pick Up						⊢												_	COC 1 of 1								
BARR	Jefferson	City, MC		1100		Teklal	0,	inc	•				L	Water Soil														
	(573) 63	8-5000			C	ourier	Pi	ck	()p																		1	Project Manager: Ty Morris
Project Number:	25860009.	00 TLM (021			-			,				1														,,	
Project Name: Rivermines NPDES																		1#(unpres.)		of Containers	Project QC Contact: Andrea Nord				
Sample Origination State: MO (use two letter postal state abbreviation)									1	Spiles			uo				/# (I	1eOH	rved	d) #2	vial, un		Cont					
COC Number: R	MP 062513	3										-	1	led So		Solids	Carb	Is			MeOH	(tared MeOH)	unpreserved)	eserve	stic vi			Sampled By: Stephen Moilanen
					Matrix Typ					Гуре			nsben		ole Sol		Metals Ived Meta	SS	TE (ta	BTE (t	DRO (tared unpreserved)	(unpr	s (plastic		Number	Laboratory: Teklab		
Location	n	Start Depth	Stop Depth	Depth Unit (m./ft. or in.)	Collection Date (mm/dd/yyyy)	Collection Time (hh:mm)	Water	Soil		Grab	Comp	oc	Hds	Total Suspended Solids	Sulfate	Settleable	Total Organic Carbon	Dissolved Metals	Hardness		VOCs (tared MeOH)	GRO, B	Metals (SVOCs (unpreserved)	% Solids		Total N	
13억 1. RM-001	1394 7001				06/25/13	12:40	х		,	x			x	X	x	x	x	. ,	x x								5	Preservatives: 2 HNO3, 1 H2SO4, 2 Unpreserved
2. RM-US	2007				06/25/13	13:30	x		,	x			х	х	x		x :	x x	x x								5 .	Preservatives: 2 HNO3, 1 H2SO4, 2 Unpreserved
3. RM-DS	703				06/25/13	13:30	х		,	x			х	х	x		x :	хх	(x								5	Preservatives: 2 HNO3, 1 H2SO4, 2 Unpreserved
4. RM-DUP	2004				06/25/13	:	х		,	x	-		х	x	X		x :	x x	X								5	Preservatives: 2 HNO3, 1 H2SO4, 2 Unpreserved
5.									\perp																			
6.																												
7.																												
8.																												
Comments: Investigate Doe Run. Matrix is surface Metals include C	e water.			Run. Rest			(aol	ds@ba	arr.cor	n) at	t Bar									rd@ba	rr.co	m) a	t Ba	rr Er	ngine	ering	, and I	Mark Nations (mnations@doerun.com)
					Relinquished	By: ////	11.			O	n Ice?		16	75	5/1	3	14	:3	0			. (1		-	

Common Parameter/Container - Preservation Key

- #1 Volatile Organics = BTEX, GRO, TPH, 8260 Full List #2 - Semivolatile Organics = PAHs, PCP, Dioxins, 8270 Full List, Herbicide/Pesticide, PCBs
- #3 General = pH, Chloride, Fluoride, Alkalinity, TSS, TDS, TS, Sulfate
- #4 Nutrients = COD, TOC, Phenols, Ammonia Nitrogen, TKN

					/) .		
Relinquished By: Stephen Moilanen	On Ice? ✓Y □N	Bate: 5/13	14:30 Time:	Received by:	H	Date: 36/3	Time: 1700
Relinquished	On Ice? □Y □N	Bate: 6.13	Tip8555	Regived by	cerpot a		Time 8',55
Samples Shipped VIA: Air Freight	Federal Express [☐Sampler		Air Bill Number		, ,	
Other:	odrier			1 mg th	110		

Parameters

Distribution: White - Original Accompanies Shipment to Lab; Yellow - Field Copy; Pink Lab Coordinator